搭建深度学习docker容器(2)- CentOS7安装NVIDIA-Docker

前言

紧跟上期博客,我们继续在Centos7上安装NVIDIA-Docker

nvidia-docker

相关环境准备

在开始之前我们需要确保已经安装好了Docker的环境,并且也安装了Docker Compose

需要注意的是,因为NVIDIA-Docker软件的存在,我们不需要在宿主机上安装CUDA工具包,这样我们可以根据不同的需要选择合适的版本。

NVIDIA容器工具包对应的Github代码仓库地址:https://github.com/NVIDIA/nvidia-docker

开始安装

1
2
3
4
5
6
7
8
9
10
11
# 获得当前操作系统的发行版和版本,以便下载适用于NVIDIA Docker Toolkit的正确仓库
distribution=$(. /etc/os-release;echo $ID$VERSION_ID)

# 下载NVIDIA Docker Toolkit仓库,并将其保存为文件到/etc/yum.repos.d/目录中,使得包管理器够定位并安装工具包
curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.repo | sudo tee /etc/yum.repos.d/nvidia-docker.repo

# 使用yum安装nvidia-container-toolkit软件包
sudo yum install -y nvidia-container-toolkit

# 重新启动Docker守护程序,以便它识别通过安装NVIDIA Docker Toolkit进行的新配置更改
sudo systemctl restart docker

验证&使用

1
2
3
4
5
6
7
8
9
10
11
12
13
# 在现有的GPU上启动启用GPU的容器,并运行nvidia-smi命令
docker run --gpus all nvidia/cuda:10.0-base nvidia-smi

# 在两个GPU上启动启用GPU的容器,并运行nvidia-smi命令
docker run --gpus 2 nvidia/cuda:10.0-base nvidia-smi

# 在特定的GPU上启动启用GPU的容器,并运行nvidia-smi命令
docker run --gpus '"device=1,2"' nvidia/cuda:10.0-base nvidia-smi
docker run --gpus '"device=UUID-ABCDEF,1"' nvidia/cuda:10.0-base nvidia-smi

# 这个命令演示了如何为容器指定能力(图形、计算等)
# 请注意,这种方式很少使用
docker run --gpus all,capabilities=utility nvidia/cuda:10.0-base nvidia-smi
如果对您有帮助,请小编喝一杯咖啡吧!